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Abstract

Background. Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing
requirement for global soil information, especially in terms of maps of primary and derived soil properties. Although several global soil
information systems already exist, these tend to suffer from inconsistencies derived from differing soil mapping concepts across borders
and limited spatial detail. Methodology/Principal Findings. To address the growing demand for consistent and comprehensive soil data,
we present SoilGrids1km — a global 3D soil information system (a stack of soil property and class maps at six standard depths) at 1 km
resolution. SoilGrids1km is currently comprised of spatial predictions for a selection of soil properties: soil organic carbon (g kg−1), soil
pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg) of the fine earth fraction, coarse fragments
(%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders;
new soil properties and classes will be continuously added. Predictions are based on global models which we fitted, per soil variable, using
a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of global environmental covariates
representing soil forming factors (ca. 75 covariate layers). Spatial predictions include per pixel uncertainties provided as 90 % prediction
intervals. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and
biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized
World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance.
SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not
previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil
properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors,
(3) low sampling density and spatial clustering of soil profile locations, (4) noise due to partially-harmonized soil profile data. However,
as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become
available and new modelling approaches are tested. SoilGrids1km maps are available for download via http://soilgrids.org under
a Creative Commons Non Commercial license.

Introduction

There is increasing recognition of the urgent need to im-
prove the quality, quantity and spatial detail of information
about soils to respond to challenges presented by growing
pressures on soils to support a large variety of critical func-
tions [1,2,3,4]. Arrouays et al. [3] argue that existing soils
information is not well suited to addressing vital questions
related to mapping, monitoring or modelling soil processes
that are driven by fluxes or changes in soils of water, nutri-
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ents, carbon, solutes or energy. Conventional models of soil
variation describe variation in the horizontal dimension us-
ing polygons comprising classes of named soils [5]. In the
vertical dimension, variation is described in terms of classes
of horizons or layers that vary in their properties, thickness
and depth. These conceptual models of discrete variation of
classes of soil in horizontal and vertical directions are not
well suited for use in many of the (global) simulation models
and decision making systems currently used to describe and
interpret soil functions and processes, such as supporting
crop growth modelling, modelling hydrological and clima-
tological processes, soil carbon dynamics or erosion [5,2].
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Most modern spatial models that require information about
soils as an input need accurate numerical information about
continuous variation in soil properties. Models also require
input data layers that are complete, consistent and as correct
and current as possible. These requirements are not well met
by current sources of soils information, especially sources
of global extent.
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Fig. 1. Spatial resolution and temporal coverage / publication
time of some widely used global environmental data layers
(global soil layers have been highlighted): GLWD — Global
Lakes and Wetlands Database, HWSD — Harmonized World Soil
Database, MOD12C1 — MODIS Land Cover Type Yearly L3,
MOD13C2 — Vegetation Indices Monthly L3, CHLO/SST —
MODIS Aqua Level-3 annual Chlorophyll / mid-IR Sea Surface
Temperature, FRA — Forest Resources Assessment, GPW —
Gridded Population of the World, DMSP-OLS — Nighttime Lights
Time Series, GlobCov — Land Cover classes based on the MERIS
FR images, GADM — Global Administrative Areas, TanDEM-X
— Germany’s topographic radar mission. Key agenda setters in
the terms of production and dissemination of remote sensing and
thematic environmental layers at the beginning of the 21st century
include: NASA’s MODIS (Moderate-resolution Imaging Spectro-
radiometer) and Landsat products — in terms of thematic content
and usability [6,7,8], and Germany’s TanDEM-X new global 12 m
resolution DEM with ±2 m vertical accuracy [9]. Based on infor-
mation retrieved on February 15th 2014.

Soil is probably one of the least well described thematic
layers at the global scale, and existing global soil maps are
often of undocumented or unknown accuracy [5]. At the mo-
ment, only coarse scale soil maps of the world are available
at an effective resolution of about ∼20 km [10]. The most
commonly used global soil maps include [5,2]: Harmonized
World Soil Database (HWSD) [11], USGS-produced soil
property maps 1 and ISRIC-WISE based soil property maps
[12].

1 http://soils.usda.gov/use/worldsoils/mapindex/

While widely used and cited, these various coarse resolution
soil maps tend to suffer from artefacts due to use of differ-
ent soil mapping concepts between countries and regions,
from variation in the underlying soil mapping scale (usually
between 1:0.5M to 1:5M) and from differences in reliabil-
ity of source data within and between continents [5,2]. They
can also not easily be updated with new information and
often lack any measure of uncertainty, which is assumed to
be significant. In summary, currently available global soil
maps are not comparable in level of detail, spatial accuracy
and usability with other global environmental layers such as
global land cover and climatic products (Figure 1).

In this paper, we present and describe SoilGrids1km — a
global 3D soil information system at 1 km resolution — as
a first response to the need for new, consistent and coherent,
global soil information. SoilGrids1km was produced using
the Global Soil Information Facilities (GSIF), which was
recently developed at ISRIC as a framework and platform
to support widespread, open collaboration in the assembly,
collation and production of global soil information.

Materials and Methods

Global Soil Information Facilities

ISRIC — World Soil Information has a mandate to serve the
international community with information about the world’s
soil resources to help address major global issues. Over the
last four years, in collaboration with a growing number of
international partners and with direct support from the Bill
and Melinda Gates Foundation (AfSIS project 2 ), ISRIC has
been developing a cyberinfrastructure called Global Soil In-
formation Facilities (GSIF).

GSIF has a particular emphasis on supporting the assem-
bly and collation of geo-registered soil profile descriptions
with associated analytical data, and on supporting the pro-
duction of new maps of 3D continuous soil properties and
soil classes at global to regional scales. GSIF consists of
several components: data portals for assembling and hosting
soil profile data and covariate data, software for global soil
data analysis and mapping, and facilities for documenting
data and methods and for automating workflows.

One of these components is “SoilGrids” — an automated
system for global soil mapping. SoilGrids is an implemen-
tation of model-based geostatistics [13,14] for the purpose
of predicting soil properties (in 2D or 3D) and soil classes
for a global soil mask (see Figure 3c) using automated map-
ping. Automated mapping is the computer-aided generation
of maps from point observations and covariate layers, with
minimal human intervention, so that map updating is easy.
In the context of geostatistical mapping, automated map-
ping implies that model fitting, prediction and visualization

2 http://africasoils.net
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are run using fully automated and reproducible workflows
[15,14]. The current implementation of SoilGrids focuses on
producing predictions at 1 km spatial resolution and for a se-
lection of soil properties and classes of interest to modelers
and to international organizations such as FAO, Intergovern-
mental Panel on Climate Change (IPCC), the Consultative
Group on International Agricultural Research (CGIAR) and
similar.

We have imagined GSIF as a crowd-sourcing system, largely
inspired by systems such as OpenStreetMap, Geo-wiki [16]
and the R Open Source environment for statistical comput-
ing [17]. In this context, GSIF follows the “Agile” approach
to software / IT development [18] meaning that we support
rapid development, integration of soil field data, output val-
idation, and rapid publishing of results. A new development
cycle with new outputs (in principle of improved accuracy)
is implemented in succession within an automated process-
ing framework until the desired target specifications have
been reached.

Input data for SoilGrids1km

The main input data sources for SoilGrids1km are global
compilations of publicly available (shared) soil profile data
and environmental layers at 1 km resolution; both are freely
accessible via portals 3 . The main sources of soil profile data
used to produce the first version of SoilGrids1km are: the
USA National Cooperative Soil Survey Soil Characteriza-
tion database 4 and profiles from the USA National Soil In-
formation System 5 , LUCAS Topsoil Survey database [19],
Africa Soil Profiles database [20], Mexican National soil
profile database [21], Brazilian national soil profile database
[22], Chinese soil profile database [23], and the soil profile
archive from the Canadian Soil Information System [24].
Other significant sources of profile data used are: ISRIC-
WISE [25], SOTER [26], SPADE [27], and Russian soil
reference profiles [28].

The compilation of points shown in Figure 2 is possibly the
largest collection of soil ground-truth data in the world. It
can be compared, for example, to a compilation of meteoro-
logical station data used to generate the WorldClim images
[29]. A large part of the soil profile data used to generate
SoilGrids1km can be accessed via the WorldSoilProfiles.org
data portal, however some data sets such as LUCAS [19]
have strict data use policies and can only be obtained from
the original data provider.

As covariates for SoilGrids1km we used a selection of GIS
layers (75): mainly MODIS images, but also climate surfaces
[29], Global Lithological Map (GLiM) [30], HWSD map-
ping units [11], and SRTM DEM-derived surfaces. These

3 http://soilprofiles and http://worldgrids.org
4 http://ncsslabdatamart.sc.egov.usda.gov/
5 http://soils.usda.gov/technical/nasis/

layers (apart from the GLiM) are all available via the World-
Grids.org data portal. The actual number of covariates used
during the analyses is different for each soil variable as these
are iteratively selected for each soil attribute, based on their
statistical significance to help predict the specific attribute.

Before model fitting, the original covariates were converted
to principal components (n = 95) to reduce data overlap and
help remove noise and artefacts [7]. Number of components
is larger than the number of original covariates because co-
variates such as lithology and land form classes are con-
verted to indicators before the principal component analysis.

Soil mask map

We make no spatial predictions for global land cover cat-
egories that represent non-active soil areas, such as: artifi-
cial surfaces and associated areas (>50 % of pixel covered
with urban areas), bare rock areas, water bodies [31], shift-
ing sands, permanent snow and ice. The global mask map
of soils with vegetation cover and world deserts is shown in
Figure 3c.

The soil mask map was derived using the long term MODIS
LAI images (MOD15A2), MODIS land cover product
(MOD12Q1) [6], and global water mask [31] products. We
distinguish three classes in the soil mask:

(1) soils with vegetation cover — pixels with MODIS LAI
> 0 for at least one month in the last 12+ years (2000–
2011),

(2) urban areas — equal to the MODIS land cover product
“Urban and built-up” class,

(3) bare soil areas — areas without any biological activity
but classified as “Barren or sparsely vegetated” in the
MODIS land cover product.

Spatial prediction models

Two groups of spatial prediction models were implemented:

(1) 2D or 3D regression and/or regression-kriging [32,33]
combined with splines for numerical properties as im-
plemented in the GSIF package for R. Here, the regres-
sion part is fitted using either:
• Multiple linear regression [34] (for predicting pH,

sand, silt and clay percentages and bulk density),
• General Linear Models (GLM’s) with log-link func-

tion [35,36] (for predicting organic carbon content
and CEC),

• Zero-inflated models [37] (for predicting coarse frag-
ments and depth to bedrock; Figure 4),

(2) Multinomial logistic regression (as implemented in the
nnet package for R) for predicting distribution of soil
classes [36].

As a general framework for mapping soil properties and
classes we use the regression-kriging method commonly

3
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Fig. 2. World distribution of soil profiles used to generate the SoilGrids1km product (about 110,000 points). Courtesy of various
national and international agencies (see: Acknowledgments).

used in geostatistical mapping of soil properties [32,33,38].
We extend the existing 2D regression-kriging method to 3D
space i.e. to predict values at voxels (Figure 4 right). In ad-
dition, we combine regression with splines, so that relation-
ships between the soil property and covariates as well as
soil-depth are modelled simultaneously:

ẑ(s0,d0) =
p

∑
j=0

β̂ j ·X j(s0,d0)+ ĝ(d0)+

+
n

∑
i=1

λi(s0,d0) · e(si,di)

(1)

where ẑ is the predicted soil property, si are geographical
coordinates, di is depth expressed in meters below land sur-
face. Note that β̂ j ·X j and d0, ĝ(d0) are the trend part of the
model, where X j(s0,d0) are covariates at the target location
s0 and depth d0, ĝ(d0) is the predicted vertical trend, mod-
elled by a spline function, and e(si,di) are residuals interpo-
lated using 3D kriging using kriging weights λi(s0,d0). Be-
cause all covariates in the current version of SoilGrids1km
are in fact 2D (i.e. values available at surface or for top-
soil only), we copy the values of covariates for all depths in
the regression matrix, which is a simplification. With the in-
creasing availability of gamma radiometrics and similar, we
anticipate that also 3D covariates will be used more in the
near future with values differing per depth, although many
covariates (e.g. elevation) will always remain 2D by defini-
tion.
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Fig. 4. Standard stratification and designation of a soil pro-
file: (left) soil horizons, solum thickness and depth to bedrock
(‘R’ layer), and (right) six standard depths used in the Glob-
alSoilMap project [3].

3D regression and/or regression-kriging can be considered
novel approaches to modeling soil variation. For compari-
son, the GlobalSoilMap project 6 proposes that soil-depth
spline functions and spatial prediction functions should be
fitted separately [40,3]. This spatial prediction system can
be considered 2.5D because 2D models need to be fitted
for each standard depth, i.e. each depth is modelled using a
separate model that includes different combinations of co-
variates and in which data from predictions at one depth do
not influence predictions at another. In the case of 3D mod-
elling, a single model (Eq.1) is used for predicting in both
X ,Y and d for any property or class of interest, and fitting
of the regression equation and residuals occurs at the same

6 http://globalsoilmap.net
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Fig. 3. Examples of input layers used to generate SoilGrids1km: (a) long-term day-time MODIS land surface temperature, (b) percent
cover Chernozems (based on the HWSD data set), and (c) global soil mask map. The spatial prediction domain of SoilGrids1km are the
areas with vegetation cover and urban areas, while bare soil areas have been masked out. See text for more explanation.
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Fig. 5. Individual soil profile from the ISRIC soil monolith collection (a) and globally fitted regression model for predicting soil
organic carbon using depth only (b). The individual profile horizons are described by Mokma and Buurman [39]. Adjusted R-square
for the model on the right is 0.363. Open circles show measured values for the profile on the left.

time as part of a single step. Another advantage of using
a full 3D spatial prediction system, in comparison to the
2.5D, is also that it allows for producing spatial predictions
and confidence intervals at any 3D location and not only at
standard depths.

For each soil property, we have evaluated which version of
the model in Eq.(1) would be most applicable. For example,
initial tests showed that, for some soil properties e.g. soil
organic carbon content and bulk density, the soil-depth rela-
tionship (ĝ(d0)) can often be better modelled using a log-log
relationship. Consider for example:

ÔRC(d) = exp(τ0 + τ1 · log(d)) (2)

where ÔRC(d) is the predicted soil organic carbon content
at depth d and τ1 is the rate of decrease with depth. The
model fitted using the global compilation of soil profiles
(Figure 5b) has τ0 = 4.1517 (standard error 0.005326) and
τ1 = −0.60934 (standard error 0.00145). This model ex-
plains 36 % of the variation in the log-transformed ORC,
which is a significant portion. This illustrates that any global
soil property model can significantly profit from including
depth into the statistical modelling. For other soil proper-
ties that do not show a monotonic vertical trend, higher or-
der splines implemented via the ns function in the package
splines [35] have been used to account for complex, non-
linear relationships.

Further, soil covariate layers (X j) used to produce Soil-
Grids1km were selected to represent the CLORPT model
originally presented by Jenny [41,38]:

S = f (cl,o,r, p, t) (3)

where S stands for soil (properties and classes), cl for cli-
mate, o for organisms (including humans), r is relief, p
is parent material or geology and t is time. Most of the
cl,o,r, p, t covariates are now publicly available and can be
obtained at low cost thanks to NASA’s/USGS Earth Obser-
vation projects such as MODIS and SRTM. We have also
included soil class information (WRB reference groups) ex-
tracted from the HWSD (Figure 3b). These are basically tra-
ditional soil polygon delineations, comparable to other cate-
gorical covariates e.g. land cover classes or geological units.

The 3D regression function used for modelling changes of
the of soil organic carbon content in 3D was thus (in R
syntax):

R> formulaString = (ORCDRC + 1) ~ PC1 + PC2 + ... + PC95
+ ns(altitude, df = 2)

R> glm(formula = formulaString, family =
gaussian(link = log), data = rmatrix)

where ORCDRC is the organic carbon content, PC1 to PC95

are the principal components derived from some 75 covariate
layers representing Jenny’s soil forming factors, altitude
is depth in meters from the soil surface, rmatrix is the re-
gression matrix with values of target variable and predictors,
ns is the natural spline function and df = 2 sets the num-
ber of allowed breakpoints (in this case two breakpoints to
allow for curvilinear relationship).
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Soil classes are useful ‘carriers of soil information’ [42],
hence for SoilGrids1km we also provide global predictions
for standard soil classes classified according to the two most
widely used international soil classification systems:

• FAO’s World Reference Base (WRB) — with focus on
mapping soil groups e.g. Chernozem, Luvisols, Gleysols
and similar. The current system [43] defines 32 reference
soil groups.

• United States Department of Agriculture (USDA) Soil
Taxonomy — with focus on mapping the soil suborders.
The current system [44] defines 67 soil suborders (sub-
division of 12 orders: Alfisols, Andisols, Aridisols, Enti-
sols, Gelisols, Histosols, Inceptisols, Mollisols, Oxisols,
Spodosols, Ultisols and Vertisols).

Models for predicting WRB soil groups and USDA soil or-
ders were fitted using the nnet package (fits multinomial
log-linear models via neural networks) using the default set-
tings of 100 maximum iterations [36]. Soil classes are mod-
eled as 2D variables i.e. the model does not include depth
component, e.g.:

R> formulaString = TAXGWRB ~ PC1 + PC2 + ... + PC95
R> nnet::multinom(formula = formulaString,

data = rmatrix, MaxNWts = 7000)

where TAXGWRB is the field observed WRB soil group,
nnet::multinom is the function to fit a multinomial lo-
gistic regression and MaxNWts sets the maximum allowable
number of weights high enough for such a large regression
data (regression model with ca. 100 covariates).

Note that all predictions in the initial version of Soil-
Grids1km were made using regression modelling alone. 3D
kriging on a sphere at almost one billion locations (130
million pixels times 6 depths) was beyond our technical
capacities in 2013/2014. Efforts to use full 3D regression-
kriging to produce the first version of SoilGrids1km were
abandoned in response to two main issues. Firstly, the
computational load to undertake global kriging was too
demanding for the processing resources and time we ini-
tially had at our disposal. We are working to both increase
our processing power and to make the global kriging al-
gorithms more efficient so we can run them globally for
subsequent versions of SoilGrids1km. Secondly, there are
very large areas of the world (e.g. Russia, northern Canada)
that presently have almost no point profile data. These areas
lack a sufficient number and density of point observations
to successfully compute residuals, which can then be kriged
(otherwise kriging leads to serious artifacts). Since we were
unable to produce residuals for large parts of the world, we
decided not to try to krige residuals globally at first, at least
until we obtain enough new point data to support computing
and kriging residuals for all major portions of the globe.
A full implementation of the 3D regression-kriging model
built for SoilGrids has been run successfully at the conti-
nental level in Africa but, for the present (February 2014),
we have not been able to apply full 3D regression-kriging

globally. As soon as these technical limitations are solved,
future versions of SoilGrids1km will likely also include a
3D kriging component.

Quality control

Resulting spatial predictions in SoilGrids1km are evaluated
using two groups of methods:

• Cross-validation: We used 5–fold cross-validation to
estimate the average mapping accuracy for each target
variable. For continuous soil properties, we evaluate the
amount of variation explained by the models [45]; and for
soil classes we evaluate the map purity (i.e. proportion of
observations correctly classified) and kappa statistic.

• Visual checking and overlay analysis: Because there is a
large amount of spatial data, we have requested users to
visually explore maps and look for artefacts and incon-
sistencies. Inconsistencies and artefacts in maps can be
continuously reported through a Global Soil Information
mailing list.

To derive amount of variation explained by the models for
numeric variables we first derive Root Mean Square Error
[46]:

RMSE =

√√√√1
l
·

l

∑
i=1

[ẑ(si)− z(si)]
2 (4)

where l is the number of validation points. Amount of the
variation explained by the model is then:

Σ% =

[
1− SSE

SSTO

]
=

[
1− RMSE2

σ2
z

]
[0−100%] (5)

where SSE is the sum of squares for residuals at cross-
validation points (i.e. RMSE2 ·n), and SSTO is the total sum
of squares.

Derivation of secondary soil properties: soil organic carbon
stock

The SoilGrids1km output maps can be further used for esti-
mation of secondary soil properties which are typically not
measured directly in the field and need to be derived from
primary soil properties. For instance, consider estimation of
the global carbon stock (in t ha−1). This secondary soil prop-
erty can be derived from a number of primary soil properties
[47]:

7



OCS [kg m−2] =
ORC

1000
[kg kg−1] · HOT

100
[m] ·BLD [kg m−3]·

· 100−CRF [%]

100
(6)

where OCS is soil organic carbon stock, ORC is soil organic
carbon mass fraction in permilles, HOT is horizon thickness in
cm, BLD is soil bulk density in kg m−3 and CRF is volumetric
fraction of coarse fragments (>2 mm) in percent (see also
Figure 6).

The propagated error of the soil organic carbon stock (Eq.6)
can be estimated using the Taylor series method [48]:

σOCS =
1

10,000,000
·HOT·

·
(
BLD2 · (100−CRF)2 ·σ2

ORC+

+σ
2
BLD · (100−CRF)2 ·ORC2+

+BLD2 ·σ2
CRF ·ORC2)− 1

2

(7)

where σORC, σBLD and σCRF are standard deviations of the pre-
dicted soil organic carbon content, bulk density and coarse
fragments, respectively. Note that we first predict OCS values
for all depths / horizons, then aggregate values for the whole
profile (0–2 m). We further use a map of predicted depth to
bedrock to remove all predictions outside the effective soil
depth (areas where soil is shallower than 2 m).

A more robust way to estimate the propagated uncertainty
of deriving OCS would be to use geostatistical simulations
(e.g. derive standard error from a large number of realiza-
tions �100) that incorporate spatial and vertical correla-
tions. Because we are dealing with massive data sets, run-
ning geostatistical simulations for millions of pixels was not
yet considered as an option.

Software implementation

SoilGrids1km predictions are generated via the GSIF pack-
age for R, which makes use of a large number of other basic
and contributed packages — gstat, raster, rgdal and other R
packages for spatial analysis [49]. GSIF package for R con-
tains most of the functions required to produce SoilGrids,
and will remain the main platform in the future to obtain
global model parameters and access SoilGrids through an
API.

As previously mentioned, the target resolution of Soil-
Grids1km is relatively coarse, nevertheless, the compu-
tational intensity and memory required to produce Soil-
Grids1km is high: one run of SoilGrids1km takes about

12–16 hours on a 12–core HP Z420 workstation with
64 GiB RAM running on a Windows 7 64-bit system. Note
also that since we produce predictions at six depths and
uncertainty for each depth, the quantity of GeoTIFF maps
produced is in the order of 250×912MiB ≈ 250 GiB. To
deal with processing such large data sets we used a combi-
nation of tiling and parallel processing, as implemented via
the snowfall package for R [50], to maximize the CPU usage
and minimize the time required to produce predictions.

The spatial prediction process consists of four main steps:

(1) preparation of gridded covariates (principal component
analysis),

(2) preparation of point data,
(3) model fitting and
(4) spatial prediction and construction of GeoTiffs.

From the steps listed above, spatial prediction require the
longest computing time, which is often in the order of 20 or
more hours using the computer specification listed above. As
a rule of thumb, we look for mapping frameworks that can
generate outputs within 48 hrs. If the whole process from
model fitting to prediction and export of maps to GeoTiffs
consumes �48 hrs of computing, we consider the system
to be impractical for routine operational use.

Results

Model fitting

The results of model fitting (Table 1) indicate that the dis-
tribution of soil organic carbon content is mainly controlled
by climatic conditions, i.e. monthly temperatures and rain-
fall [51], while the distribution of texture fractions (sand, silt
and clay) is mainly controlled by topography and lithology.
These key predictors agree with expectations based on exist-
ing knowledge. The regression models account for between
ca. 20–50 % of observed variability in the target variables
(Table 1). Detailed model parameters can be obtained from
the SoilGrids1km homepage 7 .

Figure 7 illustrates two examples of spatial predictions for
soil organic carbon content and pH. As mentioned previ-
ously, soil organic carbon clearly decreases with depth (see
also the soil-depth curves shown in Figure 8). Areas mapped
as having elevated values of organic carbon are typically as-
sociated with cooler and wetter climate regimes and boreal-
tundra type vegetation [51,52,53,54]. Note that several soil
variables have skewed distributions hence also the output
predictions are skewed, so that we use log-transformed leg-
ends to maximize contrast in the map (Figure 7).

Figure 8 shows predicted values for organic carbon and pH
(mean value and confidence intervals) for the same location

7 http://soilgrids.org
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3
 · (100-10) · 30 cm 
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2
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2
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2 
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 + BLD.sd
2
 · (100 - CRF)

2
 · ORC

2
 + BLD

2
 · CRF.sd

2
 · ORC

2 
)

= 4.4 kg / m
2
 = 44.1 tonnes / ha

Fig. 6. Soil organic carbon stock calculus scheme. Example of how total soil organic carbon stock (OCS) and its propagated error
can be estimated for a given volume of soil using organic carbon content (ORC), bulk density (BLD), thickness of horizon (HOT), and
percentage of coarse fragments (CRF). See text for more detail.

shown in Figure 5. The prediction intervals are rather wide
(see also Figure 11), which is connected to the fact that the
models explain only 23–51 % of the variation. However, it
is important to note that these are global maps of predictions
made using relatively coarse resolution covariates. We as-
sume that is unlikely that any effort to map the distribution
of soils at a resolution of 1 km could explain a much larger
proportion of the total variation in soil properties, as much
of this variation occurs over distances less than 1 km [55].

Also note that SoilGrids1km predictions are not capable of
representing abrupt changes in values through depth e.g. due
to buried horizons, textural heterogeneity or similar. Because
we have used linear or close to linear models (plus smooth-
ing splines) to predict values of targeted soil properties and
not e.g. regression-trees, these models have smoothed out a
significant amount of the variability in the point data, so that
it is not realistic to expect abrupt changes in soil properties;
at least not vertically (as illustrated previously in Figure 8).

Figure 9 (with a zoom in on Italy) shows that the Soil-
Grids1km predictions exhibit an order of magnitude greater
spatial detail than previous global soil information products
e.g. HWSD. This is mainly because a large stack of fine res-
olution remote sensing based covariate layers has been used
to generate SoilGrids1km, and many of these have shown to
be significantly correlated with soil properties and classes.
Spatial classification accuracy for mapped soil classes, when
evaluated using kappa statistics (Table 1), shows a some-
what better match between what was observed on the ground
for the USDA classification system (ground-truth classifica-
tion available for 16,212 profiles) than for the WRB system
(classification available for 37,015 profiles).

For many WRB classes our models predicted occurrences
in areas that are inconsistent with a strict definition of ge-
ographic areas where these classes can occur. The most
difficult to map seem to be WRB classes such as Andosols,
Solonchaks, Calcisols and Cryosols. These classes are
strictly defined (e.g. Andosols are connected with volcanic
activities and specific geology) and we need to explore ways
to prepare covariates that will prevent prediction of those
classes in areas where, by definition, they should not occur.
Likewise, USDA suborders are based on soil moisture and
climate regimes, for which we did not currently have global
covariate maps, and consequently strictly defined classes
such as Xerolls (Mollisols in Mediterranean climate; xeric
moisture regime) were predicted in Brazil, which probably
does not match the definition of the class.

Multinomial logistic regression is a purely data-driven
method, so that the overall mapping performance highly de-
pends on representation of environmental conditions by soil
samples. All classes that are poorly represented in the envi-
ronmental space, due to under-sampling, are understandably
difficult to map accurately using a purely data-driven model
[56]. Nevertheless, the final results of automated extraction
of soil classes using multinomial logistic regression are
promising, especially for mapping the USDA classes. The
mapping accuracy could probably be improved by adding
more classification-related covariates and more field obser-
vations of soil taxonomy, hopefully through crowd-sourcing,
in areas where the accuracy is critically low.

Figure 10 shows derived total soil organic carbon stock based
on Eq.(6). According to this map, the total (baseline) amount
of soil organic carbon (up to 2 m depth; excluding deserts,

9



Fig. 7. Example of SoilGrids1km layers: (A) soil organic carbon content in permille, and (B) soil pH for the topsoil (0–5 centimetres).
Boxplots show the sampled distribution of the soil property based on the present compilation of global soil profile data.

bare rock areas and ice caps) is about 330 t ha−1 on average.
The highest concentrations of soil organic carbon are in
areas of cooler climate and high rainfall, i.e. northern parts
of Canada and Russia seem to be pools for most of the
world’s soil organic carbon. This largely agrees with results
by Hugelius et al. [53] and Scharlemann et al. [57].

The map shown in Figure 10 can be used to supplement
maps of total aboveground biomass (see e.g. Ruesch and
Gibbs [58] and Scharlemann et al. [57]). Our results also
confirm that, overall, the amount of organic carbon below
ground is greater than held in biomass above ground [51].

Quality issues

The results of cross-validation are shown in Table 1. The
cross-validation results, as expected, largely reflect the
model fitting success — properties that can be modeled
successfully can also be mapped with higher accuracy. The
soil properties that were most difficult to map are soil tex-
ture fractions, CEC and WRB soil groups. Although the
accuracies of the predictions rarely exceed 50 % of the total
variation, all statistical models are significant showing clear
spatial patterns (see e.g. Figure 7).

Low cross-validation percentages are common in soil map-
ping [55,38], i.e. these numbers were not unexpected. Nev-
ertheless, these can be considered promising initial results
considering the complexity of harmonization of input point
data (see further discussion).
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Table 1
Mapping performance of SoilGrids1km — amount of variation explained (from 100 %) or purity/kappa for categorical variables
— for eight targeted soil properties and two soil classes distributed via SoilGrids1km. WRB = “World Reference Base”; USDA =
“United States Department of Agriculture”. Amount of variation explained by the models (Eq.5) i.e. kappa statistics for soil types was
determined using 5–fold cross-validation.

Variable name Type GSIF code Units Range
(observed)

Amount of var.
explained

Soil organic carbon

(dry combustion) 3D ORCDRC g kg−1 0–450 22.9 %

pH index

(H2O solution) 3D PHIH5X 10−1 2.1–11.0 50.5 %

Sand content

(gravimetric) 3D SNDPPT kg kg−1 1–94 23.5 %

Silt content

(gravimetric) 3D SLTPPT kg kg−1 2–74 34.9 %

Clay content

(gravimetric) 3D CLYPPT kg kg−1 2–68 24.4 %

Coarse fragments

(volumetric) 3D GRAVOL cm3 cm−3 0–89 -

Bulk density

(fine earth fraction) 3D BLDVOL kg m−3 250–2870 31.8 %

Cation-exchange capacity

(fine earth fraction) 3D CEC cmol+/kg 0–234 29.4 %

Depth to bedrock 2D DBR cm 0–240 -

Soil group

(WRB taxonomy) 2D TAXGWRB - - 28.1 %
(kappa)

Soil suborder

(USDA taxonomy) 2D TAXOKST - - 40.3 %
(kappa)

Based on the feedback we received to date from users vis-
iting the project homepage 8 , the main limitations of Soil-
Grids1km are:

(1) problems arising from poor relationships between co-
variates and dependent variables e.g. covariates can
only explain part of the variability, which could pos-
sibly improved by using more sophisticated statistical
models;

(2) problems arising from high spatial clustering of sam-
pling locations (see Figure 2; observations are too
sparse to improve on the regression using a kriging
step);

8 http://soilgrids.org

(3) problems associated with using partially-harmonized
soil profile data;

(4) problems arising from use of HWSD soil mapping units
that are of too coarse scale and often not completely
harmonized so that the country borders are still visible
(obvious artefact);

(5) limitations in the usability of SoilGrids1km for spatial
planning at county or farm scale due to coarse resolu-
tion of the maps;

(6) inability to consider and model significant sources of
variability e.g. temporal variability due to changes in
land use and/or land cover [59];

(7) limitations arising from insufficient use of higher qual-
ity and finer resolution conventional soil maps prepared
at national to regional scales.
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Fig. 8. SoilGrids1km-derived soil-depth curves for the profile shown in Figure 5. Location of the profile: 6.3831°E, 50.479167°N. The
shaded background indicates the 90 % prediction interval for each depth. ORCDRC = soil organic carbon content in permilles; PHIHOX
= soil pH in water suspension. See also Table 1.

Fig. 9. Spatial predictions of WRB soil groups for SoilGrids1km (left) and HWSD data set representing conventional soil maps
(right). A zoom in on North of Italy. White pixels indicate missing values.

Discussion

SoilGrids1km were released on December 5th 2013 (World
Soil Day) at the FAO Rome, as a proposed contribution of
the Netherlands to the Global Soil Partnership [60]. The sys-
tem, at the moment, includes predicted values for (Table 1):
soil organic carbon (g kg−1), soil pH, sand, silt and clay frac-
tions (%), bulk density (kg m−3), cation-exchange capac-
ity (cmol+/kg) of the fine earth fraction, coarse fragments

(%), soil organic carbon stock (t ha−1), depth to bedrock (in
cm; see Figure 4), World Reference Base soil groups [43],
and USDA Soil Taxonomy suborders [44]. We focussed
on generating spatial predictions at six standard depths (0–
5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–
200 cm), for which spatially distributed estimates of up-
per and lower level 90 % prediction intervals are presented.
As such, we follow the corresponding specifications of the
GlobalSoilMap project [3].
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Fig. 10. Predicted global distribution of the soil organic carbon stock in tonnes per ha for 0–200 centimetres. Total soil organic
carbon stock (here displayed on a log-scale) was estimated as a sum of soil organic carbon stocks for six standard depths and adjusted for
the depth to bedrock. Projected in the Sinusoidal equal area projection to give a realistic presentation of areas. Vast deserts (e.g. Sahara
or Gobi) can be assumed to contain close to zero organic carbon stock. See also Figure 11.

Fig. 11. Lower and upper confidence limits (90 % probability) of estimated soil organic carbon stock (tonnes per ha) for standard
depths 0–30 and 30–60 centimeters for the same area as shown in Figure 9. Derived using the procedure explained in Figure 6.

Initial predictions of soil classes were made at higher (more
general) taxonomic levels for both WRB (soil groups) and
Soil Taxonomy (suborders). This was done because the avail-
able point profile data sets do not provide a sufficient num-
ber of locations representative of all of the lower levels of
classification in each system. Without a sufficient number of
examples for all lower classes, distributed fully across all of
the feature space within which each class can occur, it is not
possible to successfully predict many of the lower classes
defined for either system. Once we have more point obser-
vations that encompass the full range of lower level classes
across the entire environmental and geographic spectrum of
their distribution, we will be able to predict at a more de-
tailed taxonomic level for both classification systems.

The main purpose of SoilGrids1km is to provide initial, fully
worked, examples of how complete and consistent global

maps of soil properties, and soil classes, can be produced us-
ing currently available legacy soil profile data, freely avail-
able gridded maps of global covariates and an on-line auto-
mated soil mapping system (GSIF). Additionally, we want
to use these initial example maps to implement and demon-
strate procedures and systems for supporting free and unre-
stricted access to what we consider to be the best possible
current, globally-complete, estimates of soil properties and
soil classes. It is hoped that the production, distribution and
use of these new, initial, global soil maps will stimulate ad-
ditional efforts to both improve these maps and to launch
new efforts to collect and use new soils information in new
soil mapping and monitoring projects. We especially aim at
supporting countries in Africa, and large parts of Asia and
Latin America, that often have limited infrastructures to pro-
duce soil information at fine resolution [5,2]. We think that
there is a great potential in using the existing field observa-
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Fig. 12. Accessing SoilGrids1km from the SoilInfo app for
mobile devices.

tions and Open Source software to map spatial and spatio-
temporal patterns, i.e. without doing any major financial in-
vestments.

A number of legitimate concerns exist relative to the ini-
tial SoilGrids1km outputs. Probably the most immediate and
significant concern has to do with the accuracy and usability
of the initial predictions of soil property and class values.
We acknowledge that the accuracy of these initial predic-
tions rarely exceeds 50 % of the total variation and, for many
properties, is often closer to 20–30 % (Table 1). The results
of cross-validation are informative but need to be taken with
caution because most of the soil profiles (Figure 2) were
not collected using probability sampling, so that the cross-
validation results possibly carry the same sampling bias as
the original data [61]. Also note that the accuracy of map-
ping WRB groups is likely lower than the accuracy of map-
ping USDA soil suborders because over 40 % of the soil
profiles that were used for the WRB classification were ac-
tually classes translated from national systems. Translation
i.e. harmonization of international soil records probably in-
troduces additional noise that can not be solved by regres-
sion modelling.

We argue that it is unreasonable to expect any global map of
variation in soil properties to explain much more than 50 %
of the total observed variation. It is well known that a signif-
icant proportion of spatial variation in soil properties occurs
over relatively short distances of metres to tens of metres
[55,56]. It is therefore unreasonable to expect that a map of
global variation in soil properties, portrayed at a spatial res-
olution of 1 km, will be able to capture and portray the 50 %
or more of total variation that occurs at resolutions shorter
than 1000 m. Our hope and plan is to gradually improve the
accuracy of the predictions by addressing these issues and

concerns one by one, in a systematic way (Figure 13). This
should be done primarily by working with national and re-
gional soil data agencies, i.e. by adding additional covariates
at increasingly finer spatial resolutions and by adding more
field/point data from areas that are under-represented.

Although millions of soil profile records have undoubtedly
been collected throughout the world, they are often un-
equally distributed (Figure 2). Likewise, many soil profiles
funded by public money are not publicly available or are
available in paper format only. Due to unbalanced represen-
tation and spatial clustering, predictions in the current ver-
sion of SoilGrids1km are largely controlled by point data
sets available for the USA and Europe. Most of these are
from agricultural soils, which inflicts additional bias. Our
predictions are therefore likely to exhibit lower accuracy for
poorly represented areas such as most of the former Russian
Federation, the northern Circumpolar Region, semi-arid and
arid areas.

We have also purposely excluded all areas that show no
evidence of historical vegetative cover. Our predictions are
hence not globally complete. This is a definite drawback for
use in global modelling and we acknowledge a need to use
either expert judgement or data from other mapping sources
to provide alternative predictions for areas with missing val-
ues. Again, for deserts and bare rock areas it is perfectly
valid to assume a 0 value for soil organic carbon, but it is
not as straightforward to estimate soil pH for shifting sand
areas for example. For the present, we argue that it is in-
appropriate to try to make predictions for areas that com-
pletely lack vegetative cover e.g. shifting sands of Sahara.
These areas have very few to zero point profile observations
which can be used to calibrate statistical prediction mod-
els. In addition, even if they did have a sufficient number
of point profile measurements, the environments of extreme
climatic conditions are so different from vegetated ones so
that any prediction model is likely to be very different from
ones we develop for vegetated areas. We recommend that
SoilGrids1km users who require values for the complete
land mask fill in the gaps by using expert knowledge or best
regional estimates as available from conventional soil map-
ping (e.g. HWSD, ISRIC-WISE).

It is worth emphasizing that we designed GSIF as a flexi-
ble framework with respect to the choice of depths, dimen-
sions (2D or 3D spatial predictions), spatial support size,
soil properties and classes and prediction models. Outputs
from GSIF are reproducible as a result of use of scripting.
Consequently, all maps can be easily updated as new inputs
(point and covariate data) become available. We used the
GSIF system to generate SoilGrids1km maps for the stan-
dard depths defined by the GlobalSoilMap project, but basi-
cally one could use the same system for any depth and also
for any new property. GSIF is therefore scalable and can
be used to produce spatial predictions for virtually any soil
property, at any depth and at any spatial or temporal reso-
lution. This, of course, assumes the existence of a sufficient
number of point soil observations of appropriate quality and
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Fig. 13. Projected evolution of SoilGrids in the years to come. We anticipate that the main drivers of success of SoilGrids will be use of
machine learning methods for model fitting, development of spatio-temporal geostatistical models, use of new sources of field and remote
sensing data and use of faster and more powerful computing capacities. Amount of variation explained by these models will eventually
reach a ‘natural limit’ (short-range variation that cannot be explained using spatial prediction models), until there is a technological jump
in soil remote sensing technology e.g. ground penetrating scanners.

of sufficient covariate layers at sufficiently fine spatial res-
olution to support modelling at a given spatial resolution.

All methods and models fitted for the purpose of produc-
ing SoilGrids1km are available via an Open Source platform
(GSIF package for R) and could be adapted for both regional
and local mapping. As with input data, the models used
to make predictions in GSIF can be improved or replaced
in subsequent iterations once better performing models are
identified. Prediction models that could be considered in the
future include those based on hierarchical Bayes models, re-
gression trees, Random Forests and other machine learning
techniques. Regression-trees and similar models could help
improve modelling of abrupt changes in values vertically,
and Random Forests could help emphasize relative impor-
tance of specific covariates. The actual modelling approach
used to produce any set of predictions will be reviewed con-
tinuously to identify and apply the approach that produces
the most correct, consistent and usable outputs.

Because the SoilGrids1km maps can be easily updated (or
changed) the process used to produce the map (i.e. SoilGrids

system) becomes more important than the map itself. Pre-
viously, the map product was seen as more important than
the process used to produce it, because any map had to be
considered as valid and useful for an extended period, as it
took so long, and cost so much, to revise or update the map.
Under the GSIF model, the final (or most current) map is no
longer the most important output and any system that only
provides a final map is considered deficient. We hence argue
that it is more important to provide access to all data and
models needed to produce (and re-produce) the map than to
simply provide the final map itself.

In the future, we hope that GSIF will be used by an increas-
ing number and variety of interested parties, including na-
tional and regional soil mapping agencies, commercial con-
sulting agencies, advocacy groups and non-governmental or-
ganizations. We envisage GSIF as a platform for coopera-
tion, collaboration, innovation and sharing. It will become
so if interested parties decide to participate and contribute
as committed partners. The number of soil profiles freely
shared by the soil science community is constantly growing
and national agencies and other data providers are encour-
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aged to contribute their point data to help improve the pre-
diction accuracy locally for specific countries / regions, for
the benefit of the global user community and in support of
the global UN conventions.

SoilGrids1km are available for download under a Creative
Commons non-Commercial license. SoilGrids1km are also
accessible via a Representational State Transfer service 9

and via a mobile phone app “SoilInfo App” 10 (Figure 12).
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